Tag Archives: microRNA_target_prediction

DIANA-microT web server: elucidating microRNA functions through target prediction.

Publication

microtwebserver

Full Text
Nucleic Acids Res. ,37(Web Server issue):W273-6.

Abstract
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

Notes

Accurate microRNA target prediction correlates with protein repression levels.

Publication

accurateBMC

Full Text
BMC Bioinformatics ,2009 Sep 18;10:295.

Abstract

DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

Notes

Review: Lost in translation: an assessment and perspective for computational microRNA target identification.

Publication

lost_in_translation

Full Text
Bioinformatics , 25(23):3049-55

Review
MicroRNAs (miRNAs) are a class of short endogenously expressed RNA molecules that regulate gene expression by binding directly to the messenger RNA of protein coding genes. They have been found to confer a novel layer of genetic regulation in a wide range of biological processes. Computational miRNA target prediction remains one of the key means used to decipher the role of miRNAs in development and disease. Here we introduce the basic idea behind the experimental identification of miRNA targets and present some of the most widely used computational miRNA target identification programs. The review includes an assessment of the prediction quality of these programs and their combinations.

Notes

DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association.

Publication

web_server_microT

Full Text
Nucleic Acids Res. 39(Web Server issue):W145-8

Abstract

microRNAs (miRNAs) are small endogenous RNA molecules that are implicated in many biological processes through post-transcriptional regulation of gene expression. The DIANA-microT Web server provides a user-friendly interface for comprehensive computational analysis of miRNA targets in human and mouse. The server has now been extended to support predictions for two widely studied species: Drosophila melanogaster and Caenorhabditis elegans. In the updated version, the Web server enables the association of miRNAs to diseases through bibliographic analysis and provides insights for the potential involvement of miRNAs in biological processes. The nomenclature used to describe mature miRNAs along different miRBase versions has been extensively analyzed, and the naming history of each miRNA has been extracted. This enables the identification of miRNA publications regardless of possible nomenclature changes. User interaction has been further refined allowing users to save results that they wish to analyze further. A connection to the UCSC genome browser is now provided, enabling users to easily preview predicted binding sites in comparison to a wide array of genomic tracks, such as single nucleotide polymorphisms. The Web server is publicly accessible in www.microrna.gr/microT-v4.

Notes